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Abstract : In this paper, we introduce the space rq(△p
u), where

rq(△p
u) = {x = (xk) ∈ ω : (△xk) ∈ rq(u, p)} ;

where rq(u, p) has recently been introduced and studied by Neyaz and Hamid (Acta Math. Acad. Paeda. Nyreg.,
28, 2012, pp. 47-58). We show its completeness property, prove that the space rq(△p

u) and l(p) are linearly
isomorphic and compute α -, β- and γ-duals of rq(△p

u). Moreover, we construct the basis of rq(△p
u). Finally, we

characterize some matrix class.

Key–Words : Sequence space of non-absolute type; paranormed sequence space; α-, β- and γ-duals ; matrix
transformations.

1 Introduction

We denote the set of all sequences with complex terms
by ω. It is a routine verification that ω is a linear
space with respect to the co-ordinatewise addition and
scalar multiplication of sequences which are defined,
as usual, by

x+ y = (xk) + (yk) = (xk + yk)

and
αx = α(xk) = (αxk),

respectively; where x = (xk), y = (yk) ∈ ω and
α ∈ C. By sequence space we understand a lin-
ear subspace of ω i.e. the sequence space is the set
of scalar sequences (real or complex) which is closed
under co-ordinate wise addition and scalar multipli-
cation. Throughout the paper N , R and C denotes
the set of non-negative integers, the set of real num-
bers and the set of complex numbers, respectively.
Let l∞, c and c0, respectively, denotes the space of
all bounded sequences, the space of all convergent se-
quences and the sequences converging to zero. Also,
by l1 , l(p), cs and bs we denote the spaces of all ab-
solutely convergent, p-absolutely convergent, conver-
gent and bounded series, respectively.

The classical summability theory deals with a
generalization of convergence of sequences and se-
ries. One original idea was to assign a limit to diver-

gent sequences or series. Toeplitz [1] was the first to
study summability methods as a class of transforma-
tions of complex sequences by complex infinite ma-
trices. The theory of matrix transformations is a wide
field in summability; it deals with the characteriza-
tions of classes of matrix mappings between sequence
spaces by giving necessary and sufficient conditions
on the entries of the infinite matrices.

Let X,Y be two sequence spaces and let A =
(ank) be an infinite matrix of real or complex num-
bers ank, where n, k ∈ N . Then, the matrix A de-
fines the A-transformation from X into Y , if for ev-
ery sequence x = (xk) ∈ X the sequence Ax =
{(Ax)n}, the A-transform of x exists and is in Y ;
where (Ax)n =

∑
k
ankxk. For simplicity in nota-

tion, here and in what follows, the summation without
limits runs from 0 to ∞. By A ∈ (X : Y ) we mean
the characterizations of matrices from X to Y i.e.,
A : X → Y . A sequence x is said to be A-summable
to l if Ax converges to l which is called as the A-limit
of x.

We denote by (A) the set of all sequences
which are summable A. The set (A) is called
summability field of the matrix A. Thus, if Ax =
{(Ax)n}, then (A) = {x : Ax ∈ c}, where c is the
set of convergent sequences. For example, (I) = c.

For a sequence space X , the matrix domain XA
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of an infinite matrix A is defined as

XA = {x = (xk) : Ax ∈ X}. (1)

A infinite matrix A = (ank) is said to be regular
[2, 3] if and only if the following conditions hold:

(i) lim
n→∞

∞∑
k=0

ank = 1,

(ii) lim
n→∞

ank = 0, (k = 0, 1, 2, ...),

(iii)
∞∑
k=0

|ank| < M, (M > 0, n = 0, 1, 2, ...).

Let (qk) be a sequence of positive numbers and let
us write, Qn =

∑n
k=0 qk for n∈ N . Then the matrix

Rq = (rqnk) of the Riesz mean (R, qn) is given by

rqnk =

{ qk
Qn
, if 0 ≤ k ≤ n,

0, if k > n

The Riesz mean (R, qn) is regular if and only if
Qn → ∞ as n→ ∞ [3].

Kizmaz [4] defined the difference sequence
spaces Z(△) as follows

Z(△) = {x = (xk) ∈ ω : (△xk) ∈ Z}

where, Z ∈ {l∞, c, c0} and △xk = xk − xk+1.
Başar and Altay [5] has studied the sequence

space as

bvp =

{
x = (xk) ∈ ω :

∑
k

|xk − xk−1|p <∞
}
,

where 1 ≤ p <∞. With the notation of (1), the space
bvp can be redefined as

bvp = (lp)△, 1 ≤ p <∞

where, △ denotes the matrix △ = (△nk) defined as

△nk =

{
(−1)n−k, if n− 1 ≤ k ≤ n,

0, if k < n− 1 or k > n.

This space was further studied by Başar, Altay
and Mursaleen [6] and have introduced bv(u, p) and
bv∞(u, p) which are defined as follows:

bv(u, p) =

{
x = (xk) ∈ ω :

∑
k

|uk∆xk|pk <∞
}
,

where 0 ≤ pk <∞ and

bv∞(u, p) =

{
x = (xk) ∈ ω : sup

k
|uk∆xk|pk <∞

}
.

With the notation of (1), the space bv(u, p) and
bv∞(u, p) can be redefined as

bv(u, p) = [l(p)]△u and bv∞(u, p) = [l∞(p)]△u

where, △u denotes the matrix △ = (△u
nk) defined as:

△u
nk =

{
(−1)n−kuk, if n− 1 ≤ k ≤ n,

0, if k < n− 1 or k > n.

for all n, k ∈ N .
The approach of constructing a new sequence

space by means of matrix domain of a particular limi-
tation method has been studied by several authors [5-
30]. They introduced the sequence spaces

(lp)∆ = bvp [5],
(lp)Er = erp and (l∞)Er = er∞ [7],
(l∞)Nq

and cNq [8],
(lp)C1

= Xp and (l∞)C1
= X∞ [9],

(l∞)Rt = rt∞, (c)Rt = rtc and (co)Rt = rt0 [10],
(c0)Ar = ar0 and cAr = arc [11],
(lp)Rt = rtp [12],
[c0(u, p)]Ar = ar0(u, p) and [c(u, p)]Ar =

arc(u, p) [13],
µG = Z(u, v, µ) [14],
(lp)Ar = arp and (l∞)Ar = ar∞ [15],
(c0)C1

= ĉ0, cC1 = ĉ [16],

cλ0 (△) =
(
cλ0

)
△

and cλ (△) =
(
cλ
)
△

[17],

rq(u, p) = {l(p)}Rq [18],
c
(
△λ

u

)
= (c)∧̂ and c0

(
△λ

u

)
= (c0)∧̂ [19];

where Nq, C1, R
t and Er denotes the Nörland,

Cesäro, Riesz and Eular means, respectively, Ar and
C are respectively defined in [6, 8, 9], µ = {c0, c, lp}
and 1 ≤ p < ∞, c0(u, p) and c(u, p) also denote the
sequence spaces generated from the Maddox’s spaces
c0(p) and c(p) by Başarir [20].

2 The Riesz Sequence space rq(△p
u)

of non-absolute type

In this section, we define the Riesz sequence space
rq(△p

u), prove that the space rq(△p
u) is a complete

paranormed linear space and it is shown to be linearly
isomorphic to the space l(p).

A linear Topological space X over the field of
real numbers R is said to be a paranormed space if
there is a sub-additive function h : X → R such
that h(θ) = 0, h(−x) = h(x) and scalar multi-
plication is continuous, that is, |αn − α| → 0 and
h(xn − x) → 0 imply h(αnxn − αx) → 0 for all α′s
in R and x′s in X , where θ is a zero vector in the
linear space X . Assume here and after that (pk) be
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a bounded sequence of strictly positive real numbers
with supk pk = H and M = max {1,H}. Then, the
linear spaces l(p) and l∞(p) were defined by Maddox
[2] (see also, [25,26]) as follows :

l(p) = {x = (xk) :
∑
k

|xk|pk <∞}

and

l∞(p) = {x = (xk) : sup
k
|xk|pk <∞}

which are complete spaces paranormed by

h1(x) =

[∑
k

|xk|pk
]1/M

and
h2(x) = sup

k
|xk|pk/M

iff inf pk > 0.
We shall assume throughout the text that p−1

k +

{p′k}−1 = 1 provided 1 < inf pk≤ H < ∞ and we
denote the collection of all finite subsets of N by F ,
where N={0, 1, 2, . . . }.

Neyaz and Hamid [18] have recently introduced
rq(u, p) which is defined as:

rq(u, p) = {x = (xk) ∈ ω :∑
k

∣∣∣∣∣∣ 1Qk

k∑
j=0

ukqjxj

∣∣∣∣∣∣
pk

<∞


where, 0 < pk ≤ H <∞.

With the notation of (1) we redefine rq(u, p) as:

rq(u, p) = {l(p)}Rq
u
.

Following Başar and Altay [5], Mursaleen et al [17,
23], Hamid et al [18, 23, 24], Basarir [27], Choudhary
and Mishra [28], Gross Erdmann [30], Tripathy [31],
we define the Reisz sequence space rq(△p

u) as the set
of all sequences such that Rq△-transform of it is in
the space l(p), that is,

rq(△p
u) = {x = (xk) ∈ ω :∑

k

∣∣∣∣∣∣ 1Qk

k∑
j=0

ukqj△xj

∣∣∣∣∣∣
pk

<∞


where, 0 < pk ≤ H <∞.

Remark 1 If we take (uk) = e = (1, 1, ...) in
rq(△p

u), we get the results obtained in [27].

With the notation of (1) we redefine rq(△p
u) as

rq(△p
u) = {l(p)}Rq△.

Define the sequence y = (yk), which will be
used, by the Rq△-transform of a sequence x = (xk),
i.e.,

yk =
1

Qk

k∑
j=0

ukqj△xj . (2)

Now, we begin with the following theorem which
is essential in the text.

Theorem 2 rq(△p
u) is a complete linear metric space

paranormed by h△, defined as

h△(x) =∑
k

∣∣∣∣∣∣ 1Qk

k−1∑
j=0

uk(qj − qj+1)xj +
qkuk
Qk

xk

∣∣∣∣∣∣
pk


1
M

with 0 < pk ≤ H <∞.

Proof: The linearity of rq(△p
u) with respect to

the co-ordinatewise addition and scalar multiplication
follows from the inequalities which are satisfied for
z, x ∈ rq(△p

u) [2]

[∑
k

∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(qj−qj+1)(xj+zj)+
qkuk
Qk

(xk+zk)

∣∣∣∣∣
pk
] 1

M

≤
[∑

k

∣∣∣∣∣ 1
Qk

k−1∑
j=0

uk(qj − qj+1)xj +
qkuk
Qk

xk

∣∣∣∣∣
pk
] 1

M

+

[∑
k

∣∣∣ 1
Qk

∑k−1
j=0 uk(qj − qj+1)zj +

qkuk
Qk

zk
∣∣∣pk] 1

M

(3)
and for any α ∈ R [32]

|α|pk ≤ max(1, |α|M ). (4)

It is clear that, h△(θ)=0 and h△(x) = h△(−x) for all
x ∈ rq(△p

u). Again the inequality (3) and (4), yield
the subadditivity of h△ and

h△(αx) ≤ max(1, |α|)h△(x).

Let {xn} be any sequence of points of the space
rq(△p

u) such that h△(xn − x) → 0 and (αn) is a
sequence of scalars such that αn → α. Then, since
the inequality,

h△(xn) ≤ h△(x) + h△(xn − x)
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holds by subadditivity of h△, {h△(xn)} is bounded
and we thus have

h△(αnx
n − αx) =∑

k

∣∣∣∣∣∣ 1Qk

k∑
j=0

uk(qj − qj+1)(αnx
n
j − αxj)

∣∣∣∣∣∣
pk


1
M

≤ |αn − α|
1
M h△(xn) + |α|

1
M h△(xn − x)

which tends to zero as n → ∞. That is to say that
the scalar multiplication is continuous. Hence, h△ is
paranorm on the space rq(△p

u).
It remains to prove the completeness of the space

rq(△p
u). Let {xi} be any Cauchy sequence in the

space rq(△p
u), where xi = {xi0, xi1, ...}, then for a

given ϵ > 0 there exists a positive integer n0(ϵ) such
that

h△(xi − xj) < ϵ (5)

for all i, j ≥ n0(ϵ). Using definition of h△ and for
each fixed k ∈ N that∣∣∣(Rq△xi)k − (Rq△xj)k

∣∣∣
≤
[∑

k

∣∣∣(Rq△xi)k − (Rq△xj)k
∣∣∣pk] 1

M

< ϵ

for i, j ≥ n0(ϵ), which leads us to the fact that
{(Rq△x0)k, (Rq△x1)k, . . .} is a Cauchy sequence of
real numbers for every fixed k ∈ N . Since R is
complete, it converges, say, (Rq△xi)k → ((Rq△x)k
as i → ∞. Using these infinitely many lim-
its (Rq△x)0, (Rq△x)1, . . ., we define the sequence
{(Rq△x)0, (Rq△x)1, . . .}. From (5) for eachm ∈ N
and i, j ≥ n0(ϵ),

m∑
k=0

∣∣(Rq△xi)k − (Rq△xj)k
∣∣pk

≤ h△(xi − xj)M < ϵM .

(6)

Take any i, j ≥ n0(ϵ). First, let j → ∞ in (6) and
then m→ ∞, we obtain

h△(xi − x) ≤ ϵ.

Finally, taking ϵ = 1 in (6) and letting i ≥ n0(1),
we have by Minkowski’s inequality for each m ∈ N
that [

m∑
k=0

|(Rqx)k|pk
] 1

M

≤ h△(xi − x) + h△(xi) ≤ 1 + h△(xi)

which implies that x ∈ rq(△p
u). Since h△(x−xi) ≤ ϵ

for all i ≥ n0(ϵ), it follows that xi → x as i → ∞,
hence we have shown that rq(△p

u) is complete, hence
the proof . ⊓⊔

Note that one can easily see the absolute property
does not hold on the spaces rq(△p

u), that is h△(x) ≠
h△(|x|) for atleast one sequence in the space rq(△p

u)
and this says that rq(△p

u) is a sequence space of non-
absolute type.

Theorem 3 The Riesz sequence space rq(△p
u) of

non-absolute type is linearly isomorphic to the space
l(p), where 0 < pk ≤ H <∞.

Proof: To prove the theorem, we will show the exis-
tence of a linear bijection between the spaces rq(△p

u)
and l(p), where 0 < pk ≤ H < ∞. With the nota-
tion of (3), define the transformation T from rq(△p

u)
to l(p) by x → y = Tx. The linearity of T is trivial.
Further, it is obvious that x = θ whenever Tx = θ
and hence T is injective.

Let y ∈ l(p) and define the sequence x = (xk) by

xk =
k−1∑
n=0

(
1

qn
− 1

qn+1

)
u−1
k Qkyk + u−1

k

Qk

qk
yk,

for k ∈ N. Then,

h△(x) =

∑
k

∣∣∣∣∣∣ 1Qk

k−1∑
j=0

uk(qj − qj+1)xj +
qkuk
Qk

xk

∣∣∣∣∣∣
pk


1
M

=

∑
k

∣∣∣∣∣∣
k∑

j=0

δkjyj

∣∣∣∣∣∣
pk


1
M

=

[∑
k

|yk|pk
] 1

M

= h1(y) <∞,

where,

δkj =

{
1, if k = j,
0, if k ̸= j.

Thus, we have x ∈ rq(△p
u). Consequently, T

is surjective and is paranorm preserving. Hence, T
is a linear bijection and this proves that the spaces
rq(△p

u) and l(p) are linearly isomorphic, hence the
proof.
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3 Basis and α-, β- and γ-duals of the
space rq(△p

u)

In this section, we compute α-, β- and γ- duals of the
space rq(△p

u) and finally in this section we give the
basis for the space rq(△p

u).
For the sequence space X and Y , define the set

S(X : Y ) = {z = (zk) : xz = (xkzk)∈ Y }. (7)

With the notation of (7), the α-, β- and γ- duals
of a sequence space X, which are respectively denoted
by Xα, Xβ and Xγ and are defined by

Xα = S(X : l1) , X
β = S(X : cs) and Xγ =

S(X : bs).
If a sequence space X paranormed by h contains

a sequence (bn) with the property that for every x ∈
X there is a unique sequence of scalars (αn) such that

lim
n
h(x−

n∑
k=0

αkbk) = 0,

then (bn) is called a Schauder basis (or briefly basis
) for X . The series

∑
αkbk which has the sum x is

then called the expansion of x with respect to (bn)
and written as x =

∑
αkbk.

First we first state some lemmas which are needed
in proving our theorems.

Lemma 4 [33]
(i) Let 1 < pk ≤ H <∞. Then A∈ (l(p) : l1) if and
only if there exists an integer B > 1 such that

sup
K∈F

∑
k

∣∣∣∣∣∑
n∈K

ankB
−1

∣∣∣∣∣
p
′
k

<∞.

(ii) Let 0 < pk ≤ 1.Then A∈ (l(p) : l1) if and only if

sup
K∈F

sup
k

∣∣∣∣∣∑
n∈K

ankB
−1

∣∣∣∣∣
pk

<∞.

Lemma 5 [33]
(i) Let 1 < pk ≤ H <∞. Then A∈ (l(p) : l∞) if and
only if there exists an integer B > 1 such that

sup
n

∑
k

|ankB−1|p
′
k <∞. (8)

(ii) Let 0 < pk ≤ 1 for every k ∈ N . Then
A ∈ (l(p) : l∞) if and only if

sup
n,k

|ank|pk <∞. (9)

Lemma 6 [33] Let 0 < pk ≤ H < ∞ for every
k ∈ N . Then A ∈ (l(p) : c) if and only if (8) and (9)
hold along with

lim
n
ank = βk for k ∈ N (10)

also holds.

Theorem 7 Let 1 < pk ≤ H < ∞ for every k ∈ N .
Define the sets D1(u, p) and D2(u, p) as follows

D1(u, p) =
∪
B>1

{a = (ak) ∈ ω :

sup
K∈F

∑
k

|
∑
n∈K

(
1

qk
− 1

qk+1

)
u−1
k anQk

+
an
qn
u−1
k QnB

−1|p
′
k <∞}

and

D2(u, p) =
∪
B>1

{a = (ak) ∈ ω :

∑
k

∣∣∣∣∣∣[
ak
qk

+

(
1

qk
− 1

qk+1

) n∑
i=k+1

ai

u−1
k Qk]B

−1

∣∣∣∣∣∣
p
′
k

<∞}.

Then,
[rq(△p

u)]
α = D1(u, p)

and

[rq(△p
u)]

β = [rq(△p
u)]

γ = D2(u, p) ∩ cs.

Proof: Let us take any a = (ak) ∈ ω. We can easily
derive with (2) that

anxn

=
n−1∑
k=0

(
1
qk

− 1
qk+1

)
u−1
k anQkyk +

an
qn
u−1
k Qnyn

= (Cy)n
(11)

where, C = (cnk) is defined as

cnk =



(
1
qk

− 1
qk+1

)
u−1
k anQk, if 0 ≤ k ≤ n− 1,

an
qn
u−1
k Qn, if k = n,

0, if k > n,

for all n, k ∈ N . Thus we observe by combining (11)
with (i) of Lemma 4 that ax = (anxn) ∈ l1 whenever
x = (xn) ∈ rq(△p

u) if and only if Cy ∈ l1 whenever
y ∈ l(p). This shows that [rq(△p

u)]
α = D1(u, p).
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Further, consider the equation,
n∑

k=0
akxk

=
n∑

k=0

[(
ak
qk

+
(

1
qk

− 1
qk+1

) n∑
i=k+1

ai

)
u−1
k Qk

]
yk

= (Dy)n
(12)

where, D = (dnk) is defined as

dnk =


(

ak
qk

+ ( 1
qk

− 1
qk+1

)
n∑

i=k+1
ai

)
u−1
k Qk,

if 0 ≤ k ≤ n,
0, if k > n.

Thus we deduce from Lemma 6 with (12) that
ax = (anxn) ∈ cs whenever x = (xn) ∈ rq(△p

u)
if and only if Dy ∈ c whenever y ∈ l(p). Therefore,
we derive from (8) that

∑
k

∣∣∣∣∣∣
ak

qk
+

(
1

qk
− 1

qk+1

) n∑
i=k+1

ai

u−1
k Qk

B−1

∣∣∣∣∣∣
p
′
k

<∞, (13)

and lim
n
dnk exists and hence shows that [rq(△p

u)]
β =

D2(u, p) ∩ cs. As proved above, from Lemma 5 to-
gether with (12) that ax = (akxk) ∈ bs whenever
x = (xn) ∈ rq(△p

u) if and only if Dy ∈ l∞ when-
ever y = (yk) ∈ l(p). Therefore, we again obtain
the condition (13) which means that [rq(△p

u)]
γ =

D2(u, p) ∩ cs and the proof of the theorem is com-
plete. ⊓⊔

Theorem 8 Let 0 < pk ≤ 1 for every k ∈ N . Define
the sets D3(u, p) and D4(u, p) as follows

D3(u, p) = {a = (ak) ∈ ω :

sup
K∈F

sup
k

|
∑
n∈K

[(
1

qk
− 1

qk+1
)u−1

k anQk

+
an
qn
u−1
k Qn]B

−1|pk <∞}

and

D4(u, p) = {a = (ak) ∈ ω :

sup
k

∣∣∣∣∣∣
ak

qk
+

(
1

qk
− 1

qk+1

) n∑
i=k+1

ai

u−1
k Qk

B−1

∣∣∣∣∣∣
pk

<∞}.

Then, [rq(△p
u)]

α = D3(u, p) and

[rq(△p
u)]

β = [rq(△p
u)]

γ = D4(u, p) ∩ cs.

Proof: The proof follows easily from Theorem 7
(above) by using second parts of Lemmas 4, 5 and
6 instead of the first parts. ⊓⊔

Theorem 9 Define the sequence b(k)(q) = {b(k)n (q)}
of the elements of the space rq(△p

u) for every fixed
k ∈ N by

b(k)n (q) =
( 1
qn

− 1
qn+1

)u−1
k Qn+u

−1
k

Qk
qk
,

if 0 ≤ n ≤ k − 1,

0, if n > k − 1.

Then, the sequence {b(k)(q)} is a basis for the space
rq(△p

u) and any x ∈ rq(△p
u) has a unique represen-

tation of
x =

∑
k

λk(q)b
(k)(q) (14)

where, λk(q) = (Rq△x)k for all k ∈ N and 0 <
pk ≤ H <∞.

Proof: It is clear that b(k)(q) ⊂ rq(△p
u), since

Rq△b(k)(q) = e(k) ∈ l(p) for k ∈ N (15)

and 0 < pk ≤ H < ∞, where e(k) is the sequence
whose only non-zero term is 1 in kth place for each
k ∈ N .

Let x ∈ rq(△p
u) be given. For every non-negative

integer m, we put

x[m] =
m∑
k=0

λk(q)b
(k)(q). (16)

Then, we obtain by applying Rq△ to (16) with (15)
that

Rq△x[m] =
m∑
k=0

λk(q)R
q△b(k)(q)

=
m∑
k=0

(Rq△x)ke(k)

and

(
Rq△

(
x− x[m]

))
i
=

{
0, if 0 ≤ i ≤ m

(Rq△x)i, if i > m

where i,m ∈ N . Given ε > 0, there exists an integer
m0 such that( ∞∑

i=m

|(Rq△x)i|pk
) 1

M

<
ε

2
,
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for all m ≥ m0. Hence,

h△
(
x− x[m]

)
=

( ∞∑
i=m

|(Rq△x)i|pk
) 1

M

≤

 ∞∑
i=m0

|(Rq△x)i|pk
 1

M

<
ε

2
< ε

for all m ≥ m0, which proves that x ∈ rq(△p
u) is

represented as (14).
Let us show the uniqueness of the representa-

tion for x ∈ rq(△p
u) given by (13). Suppose, on

the contrary; that there exists a representation x =∑
k µk(q)b

k(q). Since the linear transformation T
from rq(△p

u) to l(p) used in the Theorem 3 is con-
tinuous we have

(Rq△x)n =
∑
k

µk(q)
(
Rq△bk(q)

)
n

=
∑
k

µk(q)e
(k)
n = µn(q)

for n ∈ N , which contradicts the fact that
(Rq△x)n = λn(q) for all n ∈ N . Hence, the rep-
resentation (14) is unique. This completes the proof.
⊓⊔

4 Matrix Mappings on the Space
rq(△p

u)

In this section, we characterize the matrix mappings
from the space rq(△p

u) to the space l∞.

Theorem 10 (i) : Let 1 < pk ≤ H < ∞ for every
k ∈ N . Then A ∈ (rq(△p

u) : l∞) if and only if there
exists an integer B > 1 such that

C(B) = sup
n

∑
k∣∣∣∣∣∣

ank
qk

+

(
1

qk
− 1

qk+1

) n∑
i=k+1

ani

u−1
k B−1Qk

∣∣∣∣∣∣
p
′
k

<∞ (17)

and {ank}k∈N ∈ cs for each n ∈ N .
(ii) : Let 0 < pk ≤ 1 for every k ∈ N . Then

A ∈ (rq(△p
u) : l∞) if and only if

sup
n,k

∣∣∣∣∣∣
ank
qk

+

(
1

qk
− 1

qk+1

) n∑
i=k+1

ani

u−1
k Qk

∣∣∣∣∣∣
pk

<∞, (18)

and {ank}k∈N ∈ cs for each n ∈ N .

Proof: We only prove the part (i) and (ii) follows
in a similar fashion. So, let A ∈ (rq (△p

u) : l∞) and
1 < pk ≤ H < ∞ for every k ∈ N . Then Ax
exists for x ∈ rq(△p

u) and implies that {ank}k∈N ∈
{rq(△p

u)}β for each n ∈ N . Hence necessity of (17)
holds.

Conversely, suppose that the necessities (17) hold
and x ∈ rq(△p

u), since {ank}k∈N ∈ {rq(△p
u)}β for

every fixed n ∈ N , so the A-transform of x exists.
Consider the following equality obtained by using the
relation (11) that

m∑
k=0

ankxk

=
m∑
k=0

ank
qk

+

(
1

qk
− 1

qk+1

) m∑
i=k+1

ani

u−1
k Qkyk.

(19)

Taking into account the assumptions we derive
from (19) as m→ ∞ that∑

k

ankxk

=
∑
k

ank
qk

+

(
1

qk
− 1

qk+1

) ∞∑
i=k+1

ani

u−1
k Qkyk

(20)

Now, by combining (20) and the inequality which
holds for any B > 0 and any complex numbers a, b

|ab| ≤ B

(∣∣∣aB−1
∣∣∣p′ + |b|p

)

with p−1+p′−1 = 1( see [10]), one can easily see that

sup
n∈N

∣∣∣∣∣∑
k

ankxk

∣∣∣∣∣
≤ sup

n∈N

∑
k∣∣∣∣∣∣

ank
qk

+

(
1

qk
− 1

qk+1

) ∞∑
i=k+1

ani

u−1
k Qk

∣∣∣∣∣∣ |yk|
≤ B

[
C(B) + hB1 (y)

]
<∞.

This shows thatAx ∈ l∞ whenever x ∈ rq(△p
u). This

completes the proof. ⊓⊔
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